${\bf Algebra~1-UNIT~1}$ Relationships between Quantities and Reasoning with Equations

Critical Area: By the end of eighth grade, students have learned to solve linear equations in one variable and have applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. This unit builds on these earlier experiences by asking students to analyze and explain the process of solving an equation. Students develop fluency writing, interpreting, and translating between various forms of linear equations and inequalities, and using them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of

simple exponential equations. All of this work is grounded on understanding quantities and on relationships between them.

CLUSTERS	work is grounded on understanding quantities and COMMON CORE STATE STANDARDS	CPM CONNECTION	OTHER RESOURCES
02001210	Algebra - Seeing Structure in Expressions	2.1.4, 3.3.2, and throughout text	MARS Tasks:
(m) Interpret the structure of	A.SSE.1 Interpret expressions that represent	MN: 3.2.3, 7.2.3, 8.1.1, 8.2.4	Solving Equation in One
expressions.	a quantity in terms of its context.★	2-44, 6-35(a), 9-126, 10-145,	Variable
Limit to linear expressions and to	a. Interpret parts of an expression, such as	11-52, 11-92, 11-130	Sorting Equations and Identities
exponential expressions with integer	terms, factors, and coefficients.	2.1.4, 4.1.1, 7.1.3, 8.2.5, 10.2.3,	Manipulating Polynomials
exponents.	b. Interpret complicated expressions by	10.2.6	Defining Regions of Inequalities
	viewing one or more of their parts as single	MN: 10.2.3, 10.2.6	Comparing Investments
	entity. For example, interpret $P(1+r)n$ as	7-75, 10-53, 10-67, 10-92,	
	the product of P and a factor not depending	11-49, 11-92	Teaching Channel:
	on P.		<u>Using Stations to Explore</u>
			Algebra Expressions
(m) Understand solving equations	Algebra - Reasoning with Equations and		Illustrative Mathematics:
as a process of reasoning and	Inequalities	3.2.1, 3.3.1, 10.2.2, 10.2.3,	Exploring Equations
explain the reasoning.	A.REI.1 Explain each step in solving a	10.2.6	Algebra Tiles
Students should focus on and master	simple equation as following from the	MN: 3.2.1, 3.2.4, 10.2.1, 10.2.3	
A.REI.1 for linear equations and be	equality of numbers asserted at the previous	3-99, 3-102, 3-104, 4-16, 4-92,	
able to extend and apply their	step, starting from the assumption that the	4-102, 10-67	
reasoning to other types of equations	original equation has a solution. Construct a		Mathematics Vision Project:
in future courses.	viable argument to justify a solution		
	method.		
(m) Solve equations and			Module 1: Getting Ready
inequalities in one variable.		3.2.1, 3.3.1–3.3.3, 9.2.1, 9.2.2,	<u>Module</u>
Extend earlier work with solving		10.2.1, 10.2.2, 10.2.6, 10.3.3	
linear equations to solving linear	A.REI.3 Solve linear equations and	MN: 10.2.1, 10.2.2, 10.2.3	
inequalities in one variable and to	inequalities in one variable, including	Checkpoints 1 and 4	
solving literal equations that are	equations with coefficients represented by	3-21, 3-94, 4-54, 8-22, 9-95,	
linear in the variable being solved	letters.	9-116, 11-31, 11-3	

for. Include simple exponential equations that rely only on application of the laws of exponents, such as $5x = 125$ or $2x = \frac{1}{16}$.	A.REI.3.1 Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context. CA addition	3.3.1, 9-82, 9-101, 10-65, 10.2.6, 10-106, 10.3.3 MN: 10.2.6 9-100, 9-108, 10-45, 10-92, 10-129	Illustrative Mathematics: Integer Solutions to Inequality Teaching Channel: Collaborate to Solve Compound Inequalities
(s/a) Reason quantitatively and use units to solve problems. Working with quantities and the relationships between them provides grounding for work with expressions, equations, and functions.	Numbers - Quantities N.Q.1 Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	2.2.2, 2.3.1, 4.3.1, 6.1.1–6.2.5, 7.1.6, 8.2.1 MN: 2.1.4, 6.1.2, 7.1.3 2-61, 2-90, 2-94, 6-24, 6-35, 7-17, 7-35, 7-39, 8-34, 8-114, 9-60, 9-109(b), 11-85.	MARS TASK: Leaky Faucet Dan Meyer Achieve the Core: Yogurt Packing
	N.Q.2 Define appropriate quantities for the purpose of descriptive modeling.	2.2.2, 2.2.3, 2.3.1, 4.1.1, 4.1.2, 4.2.2, 5.1.1, 7.1.6, 7.2.3, 9.2.2, 9.3.2, 9.4.2, .4.3, 11.3.4, 11.3.5 MN: 4.1.1, 6.2.1, 6.2.5 Checkpoints 7A, 8, and 9 4-62, 5-70, 7-11, 7-38, 7-78, 7-117, 9-87, 9-115, 10-150	Illustrative Mathematics: How Much is a penny worth Traffic Jam Georgia Standards: Unit 1: Relationships Between Quantities
	N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	6.1.3, 11.3.4, 11.3.5 6-55, 6-73, 7-17, 7-78, 7-122, 7-123, 8-54, 8-111, 9-60	
(m) Create equations that describe numbers or relationships. Limit A.CED.1 and A.CED.2 to linear and exponential equations, and, in the case of exponential equations, limit to situations requiring evaluation of exponential functions at integer inputs. Limit A.CED.3 to linear equations and inequalities. Limit A.CED.4 to formulas	Algebra - Creating Equations A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	4.1.1, 4.1.2, 7.1.2–7.1.6, 9.1.3, 9.1.4, 9.2.1, 9.2.2, 11.3.4, 11.3.5 MN: 9.2.1, 9.3.2 Checkpoint 7A 3-23, 5-70, 5-80, 5-121, 7-63, 9-50, 9-71, 10-116, [11-15, 11-24, 11-93]	MARS Tasks: Building and Solving Equations Optimization Problems: Boomerangs Intervention Task Lines and Linear Equations

LAUSD Secondary Mathematics

	T	T	1
which are linear in the variable of	A.CED.2 Create equations in two or more	2.2.1–2.2.3, 4.1.2, 4.3.1, 7.1.2–	
interest.	variables to represent relationships between	7.1.6, 8.2.1–8.2.4, 9.1.3, 9.1.4	
	quantities; graph equations on coordinate axes	Checkpoints 5B and 9	Illuminations:
	with labels and scales.	2-61, 2-93, 3-36, 4-51, 7-38,	
		7-48, 7-117, 9-87, 10-86	Bathtub Water Levels
		,,	
			Inside Mathematics:
	A.CED.3 Represent constraints by equations	4.1.1–4.2.5, 9.3.1–9.4.3, 11.3.4,	
	or inequalities, and by systems of equations	11.3.5	On a Balance
	and/or inequalities, and interpret solutions as	MN: 9.3.2, 9.4.1	
	viable or non-viable options in a modeling	4-23, 5-132, 9-110, 9-115,	Illustrative Mathematics:
	context. For example, represent inequalities	10-85, 10-150, 11-6	
	describing nutritional and cost constraints on	10-03, 10-130, 11-0	Dimes and Quarters
	combinations of different foods.		
	combinations of different roods.		Equations and Formulas
	A.CED.4 Rearrange formulas to highlight a	3.3.2, 3.3.3	
		· ·	Rewriting Equations
	quantity of interest, using the same reasoning	Checkpoint 6A	
	as in solving equations. For example,	3-94, 4-76, 4-121, 5-23, 6-8,	Teaching Channel
	rearrange Ohm's law $V = IR$ to highlight	6-29, 6-126	
	resistance R.		Reviewing Linear Equations in
	10000ttilled 1tt		Two Variables
			1110 1 111110105

Algebra 1 – UNIT 2 Linear and Exponential Relationships

Critical Area: Students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many examples of functions, including sequences; they interpret functions given graphically, numerically, symbolically, and verbally, translate between representations, and understand the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students explore systems of equations and inequalities, and they find and interpret their solutions. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They interpret arithmetic

sequences as linear functions and geometric sequences as exponential functions.

CLUSTERS COMMON CORE STATE STANDARDS CPM CONNECTIONS OTHER RESOURCE			
		CFW CONNECTIONS	
Extend the properties of exponents to	Number and Quantity - The Real Number		Mars Tasks:
rational exponents.	System		Applying Properties of
	N.RN.1 . Explain how the definition of the meaning	7.2.1	<u>Exponents</u>
	of rational exponents follows from extending the		<u>Giantburgers</u>
	properties of integer exponents to those values,		Multiplying Cells
	allowing for a notation for radicals in terms of		The Real Number System
	rational exponents. For example, we define $5^{1/3}$ to		Manipulating Radicals
	be the cube root of 5 because we want $(5^{1/3})^3$ =		
	$5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.		
	•		
	N.RN.2 Rewrite expressions involving radicals and	7.2.1	
	rational exponents using the properties of	MN: 3.1.2, 7.2.2, 9.1.4	
	exponents.	7-90, 7-100, 8-32, 8-50, 8-75,	
		9-9, 11-76	
Build a function that models a	Functions - Building Functions	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MARS Tasks:
relationship between two quantities.	F.BF.1. Write a function that describes a		A Golden Crown
relationship between two quantities.	relationship between two quantities.★		71 Golden Clown
Limit to F.BF.1a, 1b, and 2 to linear	relationship between two quantities.		Illuminations:
and exponential functions. In F.BF.2,	a Datarmina an avaligit avarraccion, a requesiva		Graphing Real-Life Data
- v	a. Determine an explicit expression, a recursive		Graphing Real-Life Data
connect arithmetic sequences to	process, or steps for calculation from a context.		Illustrative Mathematics:
linear functions and geometric	b. Combine standard function types using		
sequences to exponential functions.	arithmetic operations. For example, build a		Skeleton Tower
	function that models the temperature of a		A Sum of Functions
	cooling body by adding a constant function to a		<u>Lake Algae</u>

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	decaying exponential, and relate these functions		Kim and Jordan
	to the model.		*
	F.BF.2. Write arithmetic and geometric sequences		Intervention MARS Task:
	both recursively and with an explicit formula, use		Modeling Situations with
	them to model situations, and translate between the		Linear Equations
	two forms.★		<u>Emedi Equations</u>
Build new functions from existing	Functions - Building Functions		Illustrative Mathematics:
functions.	F.BF.3. Identify the effect on the graph of replacing		Campus Flu
	f(x) by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific		
Focus on vertical translations of graphs of linear and exponential	values of k (both positive and negative); find the		Teaching Channel: Intervention
functions. Relate the vertical	value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the		Conjecturing About
translation of a linear function to its	graph using technology. <i>Include recognizing even</i>		Functions
y-intercept. While applying other	and odd functions from their graphs and algebraic		
transformations to a linear graph is	expressions for them.		YouCubed.org
appropriate at this level, it may be			Intervention
difficult for students to identify or			Patterns and Functions Unit
distinguish between the effects of the other transformations included in this			
standard.			
Understand the concept of a function	Functions - Interpreting Functions	1.1.1, 1.2.3–1.2.5, 11.1.1	Illustrative Mathematics
notation.	F.IF.1 . Understand that a function from one set	MN: 1.2.5	Foxes and Rabbits
	(called the domain) to another set (called	1-69, 1-70, 1-78, 2-52, 4-28,	
	the range) assigns to each element of the domain exactly one element of the range. If	11-131	35.0
	f is a function and x is an element of its		Mathematics Vision Project:
	domain, then $f(x)$ denotes the output of f		Troject.
	corresponding to the input x . The graph of f		Module 5 Features of
	is the graph of the equation $y = f(x)$.		<u>Functions</u>
	F.IF.2 . Use function notation, evaluate functions	1.1.1, 1.2.3–1.2.5	
	for inputs in their domains, and interpret	MN: 1.2.5	
	statements that use function notation in	1-80, 3-10, 4-30, 7-99, 11-4,	<u>Domain and Range</u>
	terms of a context.	11-12, 11-78	

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	F.IF.3 . Recognize that sequences are functions,	5.2.2, 5.2.3, 5.3.3	
	sometimes defined recursively, whose	5-123, 6-128, 7-18, 7-51, 7-76,	
	domain is a subset of the integers. For	7-108	
	example, the Fibonacci sequence is defined		
	recursively by $f(0) = f(1) = 1$,		
	$f(n+1) = f(n) + f(n-1) \text{ for } n \ge 1.$		
Interpret functions that arise in	Functions - Interpreting Functions	112121212222711	
applications in terms of a context.	F.IF.4 For a function that models a relationship	1.1.3, 1.2.1, 2.1.3–2.2.3, 7.1.1,	
	between two quantities, interpret key features of	7.1.5, 7.1.6, 8.2.1, 8.2.3, 8.2.4,	
Focus linear and exponential functions	graphs and tables in terms of the quantities, and	11.3.4, 11.3.5	
	sketch graphs showing key features given a verbal	MN: 1.1.2, 7.1.1, 2.2.3, 8.2.4	
	description of the relationship. Key features	1-25, 1-47, 1-59, 6-114, 9-126,	
	include: intercepts; intervals where the function is	11-130	
	increasing, decreasing, positive, or negative;		
	relative maximums and minimums; symmetries; end		
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	behavior; and periodicity.★		
Analyze functions using different	Functions - Interpreting Functions		Illustrative Mathematics
representations.	F.IF.7. Graph functions expressed symbolically and		Foxes and Rabbits
Linear, exponential, quadratic, absolute	show key features of the graph, by hand in simple		Interpreting the Graph
value, step, piecewise-defined.	cases and using technology for more complicated		
	cases.	112112211222	
	a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	1.1.2, 1.1.3, 2.1.1–2.3.2, 8.2.1, 8.2.3–8.2.5, 11.1.1	
	intercepts, maxima, and minima.	MN: 2.2.3	
		2-33, 3-8, 3-41, 9-76, 8-11,	
		8-58, 10-41, 10-86, 11-110	
		8-36, 10-41, 10-66, 11-110	
		1.2.1, 1.2.2, 2.2.2, 7.1.3	
	b. Graph square root, cube root, and piecewise-	MN:7.1.3, 7.1.5 1-86, 6-28, 6-	
	defined functions, including step functions and	109, 6-114, 7-61,	
	absolute value functions. ★	11-35, 11-73, 11-84, 11-90,	
	accorded value functions. A	11-131	
	F.IF.9 . Compare properties of two functions each	2.2.2, 7.1.6, 8.2.1, 8.2.4	
	represented in a different way (algebraically,	1-79, 3-71, 4-49, 4-39, 9-42,	
	graphically, numerically in tables, or by verbal	9-88, 9-94, 11-90	
	1 5 april curi, incriteding in tuoics, or by verbur	1	

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.		
Solve systems of equations. Linear-linear and linear-quadratic.	Algebra - Reasoning with Equations and Inequalities A.REI.5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions A.REI.6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	4.2.2–4.2.5 MN: 5.1.1 4-40, 4-83 4.1.1–4.2.5 MN: 4.1.2, 4.2.2 Checkpoint 7B 3-73, 4-62, 4-116, 4-122, 7-7,	
Represent and solve equations and inequalities Graphically. Linear and exponential; learn as general principle.	Algebra - Reasoning with Equations and Inequalities A.REI.10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	7-40, 8-21, 8-62, 10-11 1.1.3–1.2.2, 2.1.4, 2.3.2, 4.2.2, 7.2.2, 9.3.1 MN: 4.2.3, 4.2.5 1-59, 1-86, 2-84, 4-49, 4-99, 6-114, 8-119	Mars Tasks: Defining Regions Using Inequalities
	A.REI.11. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x) = g(x)$ find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. \bigstar	10.3.1, 10.3.2 10-114, 10-130, 10-140, 10-14	

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	A.REI.12 . Graph the solutions to a linear inequality	9.3.1, 9.3.2, 9.4.1–9.4.3	
	in two variables as a half-plane (excluding the	9-127, 10-13, 10-18, 11-32,	
	boundary in the case of a strict inequality), and	11-58	
	graph the solution set to a system of linear		
	inequalities in two variables as the intersection of		
	the corresponding half-planes.		

Algebra 1 – UNIT 3 Descriptive Statistics

Critical Area: Experience with descriptive statistics began as early as Grade 6. Students were expected to display numerical data and summarize it using measures of center and variability. By the end of middle school they were creating scatterplots and recognizing linear trends in data. This unit builds upon that prior experience, providing students with more formal means of assessing how a model fits data. Students use regression techniques to describe approximately linear relationships between quantities. They use graphical representations and knowledge of the context to make judgments about the appropriateness of linear models.

With linear models, they look at residuals to analyze the goodness of fit.

CLUSTERS	COMMON CORE STATE STANDARDS	Textbook: CPM	OTHER RESOURCES
(s) Summarize, represent, and	Statistics and Probability - Interpreting		MARS Tasks:
interpret data on a single count or	Categorical and Quantitative Data		<u>Using Frequency Graphs</u>
measurement variable. ★	S.ID.1 Represent data with plots on the real	11.2.1–11.2.3	
	number line (dot plots, histograms, and box	MN: 11.2.1	<u>Using Box Plots</u>
In grades 6 – 8, students describe	plots).	11-34, 11-46, 11-53, 11-68,	
center and spread in a data		11-72, 11-103, 11-115	Illustrative Mathematics:
distribution. Here they choose a			<u>Haircut Costs</u>
summary statistic appropriate to			
the characteristics of the data	S.ID.2 Use statistics appropriate to the shape	11.2.2-11.2.3	Speed Trap
distribution, such as the shape of	of the data distribution to compare center	MN: 11.2.2, 11.2.3	
the distribution or the existence	(median, mean) and spread (interquartile	11-53, 11-67, 11-68, 11-85,	<u>Understanding the</u>
of extreme data points.	range, standard deviation) of two or more	11-103, 11-141	Standard Deviation
	different data sets.		34 . 37 . 1217
	G 770 G 7	44.0.4.44.0.0	Measuring Variability in
	S.ID.3 Interpret differences in shape, center,	11.2.1-11.2.3	a Data Set
	and spread in the context of the data sets,	MN: 11.2.2, 11.2.3	N/1-414*
	accounting for possible effects of extreme data	11-25, 11-46, 11-53, 11-68,	Mathematics Vision
	points (outliers).	11-85, 11-103, 11-141	Project:
			Module 8-Modeling
() (Data MADGE I
(s) Summarize, represent, and	Statistics and Probability - Interpreting		MARS Tasks:
interpret data on two categorical	Categorical and Quantitative Data	10.1.1	A Case of Muddying the
and quantitative variables. ★	S.ID.5 Summarize categorical data for two	10.1.1	Waters Interpreting and Using a
Students take a more	categories in two-way frequency tables.	10-16, 10-59, 10-113, 10-144, 11-144	Interpreting and Using a Graph, Tayi Force
	Interpret relative frequencies in the context of	11-144	Graph: Taxi Fares Devising a Measure for
sophisticated look at using a	the data (including joint, marginal, and conditional relative frequencies). Recognize		Correlation
linear function to model the	1		Correlation
relationship between two	possible associations and trends in the data.		

LAUSD Secondary Mathematics

	T	T	
numerical variables. In addition			Illustrative Mathematics:
to fitting a line to data, students			Musical Preference
assess how well the model fits by	S.ID.6 Represent data on two quantitative		
analyzing residuals.	variables on a scatter plot, and describe how		Support for a Longer
	the variables are related.		School Day
S.ID.6b should be focused on	a. Fit a function to the data; use functions	6.1.1–6.2.5, 11.3.1	
linear models, but may be used to	fitted to data to solve problems in the	MN: 4.1.1, 6.2.1, 6.2.5	Coffee and Crime
preview quadratic functions in	context of the data. Use given functions or	Checkpoint 8	
Unit 5 of this course.	choose a function suggested by the context.	7-11, 7-17, 7-57, 7-78, 7-110,	<u>Laptop Battery Charge</u>
	Emphasize linear and exponential models.	7-121, 7-123, 8-34, 8-61, 8-111,	
		9-60, 9-109, 11-102	Restaurant Bill and
			Party Size
	b. Informally assess the fit of a function by	6.2.1, 11.3.1	
	plotting and analyzing residuals.	MN: 6.1.4, 6.2.3	Illuminations:
		7-11, 7-39, 7-57, 7-110, 7-122,	Automobile Mileage:
		7-123, 8-34, 8-54, 9-60	Year vs. Mileage
			Barbie Bungee
	c. Fit a linear function for a scatter plot that	6.1.1–6.1.4, 11.3.1	Impact of a Superstar
	suggests a linear association.	MN: 4.1.1, 4.2.1, 6.2.1	impact of a superstar
		Checkpoint 8	
		7-11, 7-110, 7-122, 8-54, 8-61,	
		8-111, 11-102	
(s) Interpret linear models. ★	Statistics and Probability - Interpreting		MARS Tasks:
	Categorical and Quantitative Data		A Case of Muddying the
Build on students' work with	S.ID.7 Interpret the slope (rate of change) and	6.1.1, 11.3.1	Waters
linear relationships in eighth	the intercept (constant term) of a linear model	MN: 6.1.2	
grade and introduce the	in the context of the data.	Checkpoint 8	Illustrative Mathematics:
correlation coefficient. The focus		7-11, 7-110, 7-122, 8-34, 8-54,	Texting and Grades II
here is on the computation and		8-111, 8-122, 9-60, 9-109,	
interpretation of the correlation		11-88	Olympic Men's 100-
coefficient as a measure of how			meter Dash
well the data fit the relationship.			
The important distinction	S.ID.8 Compute (using technology) and	6.2.2, 6.2.4, 11.3.1	Coffee and Crime
between a statistical relationship	interpret the correlation coefficient of a linear	MN: 6.2.4	
and a cause-and-effect	fit.	Checkpoint 8	Golf and Divorce
relationship arises in S.ID.9.		7-11, 7-29, 7-110, 7-122, 8-34,	

		8-54, 8-111, 8-122, 9-60, 9-109, 11-88	High Blood Pressure
			Math Test Grades
	S.ID.9 Distinguish between correlation and causation.	6.2.3 6-100, 6-111, 6-127, 8-61	

Algebra 1 - Unit 4 Expressions and Equations

Description of the critical area: In this unit, students build on their knowledge from Unit 2, where they extended the laws of exponents to rational exponents. Students apply this new understanding of numbers and strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions and determine the values of the function it defines. Students understand that polynomials form a system analogous to the integers, they choose and produce equivalent forms of an expression.

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
(m)Interpret the structure of	Algebra - Seeing Structure in Expressions	2.1.4, 3.3.2, and throughout	Mathematics Vision Project:
expressions.	A-SSE.1 Interpret expressions that represent a quantity	text	
	in terms of its context.★	MN: 3.2.3, 7.2.3, 8.1.1, 8.2.4	
	a. Interpret parts of an expression, such as terms,	2-44, 6-35(a), 9-126, 10-145,	Mathematics Vision Project:
	factors, and coefficients.	11-52, 11-92, 11-130	Module 2- Structures of
			Expressions
			Module 1 – Quadratic Functions
	b. Interpret complicated expressions by viewing one or	2.1.4, 4.1.1, 7.1.3, 8.2.5,	
	more of their parts as a single entity. For example,	10.2.3,	
	interpret $P(1+r)n$ as the product of P and a factor not	10.2.6	
	depending on P.	MN: 10.2.3, 10.2.6	
		7-75, 10-53, 10-67, 10-92,	
		11-49, 11-92	
	A COF OIL 11 11 11 11 11 11 11 11 11 11 11 11 11	014017	
	A-SSE.2 Use the structure of an expression to identify	8.1.4, 8.1.5	
	ways to rewrite it. For example, see $x4 - y4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares	MN: 8.1.2 8-74, 9-33, 10-21, 10-28	
	that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	8-74, 9-33, 10-21, 10-28	
	inai can be jaciorea as $(x - y)(x + y)$.		
(m)Write expressions in	Algebra - Seeing Structure in Expressions	3.2.2, 8.1.1–8.2.4, 11.3.4	Mars Tasks:
equivalent forms to solve	A-SSE.3 Choose and produce an equivalent form of an	MN: 8.1.2, 8.1.4, 9.1.1	Interpreting Algebraic
problems.	expression to reveal and explain properties of the	Checkpoint 10B	Expressions
prosecus.	quantity represented by the expression.★	8-83, 8-109, 8-112, 9-122,	Forming Quadratics
	quantity represented by the empression.	10-72	Torring Quadratics
	a. Factor a quadratic expression to reveal the zeros of	1	
	the function it defines.		
		8.2.5, 9.1.1	
		8-106, 9-21, 9-76, 9-117,	

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	10-125, 11-56 3.1.1, 3.1.2, 7.1.4, 10.2.1 MN: 3.1.2, 7.2.2 7-97, 10-53, 8-75, 10-83, 10-88	
	c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as $(1.15^{1/2})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.		
(m)Perform arithmetic operations on polynomials.	Algebra – Arithmetic with Polynomial and Rational Expressions A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.		Mathematics Vision Project: Module 3: Polynomial Connections Lesson 3.4
(m)Create equations that describe numbers or relationships.	Algebra - Creating Equations A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	4.1.1, 4.1.2, 7.1.2–7.1.6, 9.1.3, 9.1.4, 9.2.1, 9.2.2, 11.3.4, 11.3.5 MN: 9.2.1, 9.3.2 Checkpoint 7A 3-23, 5-70, 5-80, 5-121, 7-63, 9-50, 9-71, 10-116, [11-15, 11-24, 11-93]	Mars Tasks: Printing Tickets Inside Mathematics: Miles of Tiles
	A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	2.2.1–2.2.3, 4.1.2, 4.3.1, 7.1.2–7.1.6, 8.2.1–8.2.4, 9.1.3, 9.1.4 Checkpoints 5B and 9 2-61, 2-93, 3-36, 4-51, 7-38,	

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V = IR$ to highlight resistance R .	7-48, 7-117, 9-87, 10-86 3.3.2, 3.3.3 Checkpoint 6A 3-94, 4-76, 4-121, 5-23, 6-8, 6-29, 6-126	
(m)Solve equations and inequalities in one variable.	Algebra - Reasoning with Equations and Inequalities A-REI.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.	8.2.5, 9.1.1–9.1.4, 10.2.5, 10.2.6 MN: 9.1.2 9-52, 9-99, 9-117, 10-151, 11-56, 11-33, 11-137	Mars Task: Multiple Solutions Illustrative Mathematics: Completing the Square
	b. Solve quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers $a + bi$.	8.2.2, .2.3, 9.1.1–9.1.4, 10.2.4, 10.2.5 MN: 8.1.3, 8.1.4, 8.2.2, 8.2.4, 9.1.2, 9.1.3, 10.2.4, 11.1.2 8-85, 9-52, 9-55, 9-63, 9-125, 10-91, 10-151, 11-33	Completing the Square
(s)Solve systems of equations.	Algebra - Reasoning with Equations and Inequalities A-REI.5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	4.2.2–4.2.5 MN: 5.1.1 4-40, 4-83	Illustrative Mathematics: A Linear and Quadratic System
	A-REI.6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables A-REI.7 Solve a simple system consisting of a linear	4.1.1–4.2.5 MN: 4.1.2, 4.2.2 Checkpoint 7B 3-73, 4-62, 4-116, 4-122, 7-7, 7-40, 8-21, 8-62, 10-11 10.3.1, 10.3.2	

CLUSTERS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
	equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	10-127, 11-70, 11-92, 11-116, 11-142	

Algebra 1– UNIT 5 Quadratic Functions and Modeling

Critical Area: In preparation for work with quadratic relationships students explore distinctions between rational and irrational numbers. They consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students learn that when quadratic equations do not have real solutions the number system must be extended so that solutions exist, analogous to the way in which extending the whole numbers to the negative numbers allows x+1=0 to have a solution. Formal work with complex numbers comes in Algebra II. Students expand their experience with functions to include more specialized functions—absolute value, step, and those that are piecewise-defined.

CLUSTER HEADINGS	COMMON CORE STATE STANDARDS	CPM CONNECTIONS	OTHER RESOURCES
(s)Use properties of rational and irrational numbers. Connect N.RN.3 to physical situations, e.g., finding the perimeter of a square of area 2.	Number and Quantity - The Real Number System N.RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	10.2.5 MN 10.2.5 10-82, 10-96, 10-115	
(m)Interpret functions that arise in applications in terms of a context. Focus on quadratic functions; compare with linear and exponential functions studied in Unit 2.	Functions - Interpreting Functions F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*	1.1.3, 1.2.1, 2.1.3–2.2.3, 7.1.1, 7.1.5, 7.1.6, 8.2.1, 8.2.3, 8.2.4, 11.3.4, 11.3.5 MN: 1.1.2, 7.1.1, 2.2.3, 8.2.4 1-25, 1-47, 1-59, 6-114, 9-126, 11-130	Illustrative Mathematics: Influenza Epidemic Warming and Cooling How is the Weather? Logistic Growth Model, Explicit Version The Canoe Trip, Variation 1 The High School Gym Temperature Change Average Cost
	F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. <i>For example, if the</i>	11.3.2, 11.3.3 6-109(h), 7-43(f), 7-98, 10-87, 11-113, 11-131	

	function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for he function.★ F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★	2.1.2–2.1.4, 2.2.2, 2.2.3, 5.3.1, 5.3.2, 7.1.2, 7.1.3 MN: 6.1.2 2-67, 4-122, 5-85, 6-86(a), 7-37, 9-42, 11-102	MADOT
(m)Analyze functions using different	Functions - Interpreting Functions		MARS Tasks:
representations.	F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in		Functions and Everyday Situations
For F.IF.7b, compare and contrast	simple cases and using technology for more		Situations
absolute value, step and piecewise	complicated cases.★		Illustrative Mathematics:
defined functions with linear,	a. Graph linear and quadratic functions	1.1.2, 1.1.3, 2.1.1–2.3.2, 8.2.1,	Identifying Graphs of Functions
quadratic, and exponential	and show intercepts, maxima, and	8.2.3–8.2.5, 11.1.1	Which Function?
functions. Highlight issues of	minima.	MN: 2.2.3	Throwing Baseballs
domain, range, and usefulness		2-33, 3-8, 3-41, 9-76, 8-11,	
when examining piecewise defined		8-58, 10-41, 10-86, 11-110	
functions. Note that this unit, and			
in particular in F.IF.8b, extends			
the work begun in Unit 2 on	b. Graph square root, cube root, and	1.2.1, 1.2.2, 2.2.2, 7.1.3	
exponential functions with integer	piecewise-defined functions, including	MN:7.1.3, 7.1.5 1-86, 6-28, 6-109,	
exponents. For F.IF.9, focus on	step functions and absolute value functions.	6-114, 7-61,	
expanding the types of functions considered to include, linear,	Tunctions.	11-35, 11-73, 11-84, 11-90, 11-131	
exponential, and quadratic.		11-131	
Extend work with quadratics to	F.IF.8 Write a function defined by an		
include the relationship between	expression in different but equivalent forms to		
coefficients and roots, and that	reveal and explain different properties of the		
once roots are known, a quadratic	function.		
equation can be factored.	a. Use the process of factoring and	8.2.1–8.2.5, 9.1.3, 9.1.4	
	completing the square in a quadratic	Checkpoint 11	
	function to show zeros, extreme values,	8-83, 8-92, 8-109, 9-21, 10-41,	
	and symmetry of the graph, and interpret	10-86, 11-56	

	1	T	
	these in terms of a context.		
	b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, $y = (1.2)^{t/10}$ and classify them as representing exponential growth or decay.	7.1.2–7.1.6, 11.3.5 MN: 7.1.3 Checkpoints 9 and 10A 7-54, 7-120, 10-58, 10-119c, 10-145, 11-52	
	F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	2.2.2, 7.1.6, 8.2.1, 8.2.4 1-79, 3-71, 4-49, 4-39, 9-42, 9-88, 9-94, 11-90	
(m)Build a function that models a	Functions - Building Functions		Graphing Stories (1-3
relationship between two quantities.	F.BF.1 Write a function that describes a		stories)
Total of the qualities	relationship between two quantities.★		
Focus on situations that exhibit a	a. Determine an explicit expression, a		Mars Task:
quadratic relationship.	recursive process, or steps for calculation		Patchwork
	from a context.		<u>Sidewalk Patterns</u>
	b. Combine standard function types using		
	arithmetic operations. For example, build		
	a function that models the temperature of		
	a cooling body by adding a constant		
	function to a decaying exponential, and		
(a) Duild now functions from ani-time	relate these functions to the model.		
(s)Build new functions from existing	Functions - Building Functions		

functions.	F.BF.3 Identify the effect on the graph of		
	replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$		
For F.BF.3, focus on quadratic	k) for specific values of k (both positive and		
functions, and consider including	negative); find the value of k given the graphs.		
absolute value functions. For	Experiment with cases and illustrate an		
F.BF.4a, focus on linear functions	explanation of the effects on the graph using		
but consider simple situations	technology. <i>Include recognizing even and odd</i>		
where the domain of the function	functions from their graphs and algebraic		
must be restricted in order for the	expressions for them.		
inverse to exist, such as $f(x) = x^2$,			
<i>x>0</i> .	F.BF.4 Find inverse functions.		
	a. Solve an equation of the form $f(x) = c$		
	for a simple function f that has an inverse		
	and write an expression for the inverse.		
	For example, $f(x) = 2 \times 3$ or $f(x) =$		
	$(x+1)/(x-1)$ for $x \neq 1$.		
(s)Construct and compare linear,	Functions – Linear, Quadratic, and	2.1.1–2.1.4, 5.3.1, 7.1.2, 7.1.3	MARS Task:
quadratic, and exponential models	Exponential Model	MN: 2.1.4	Modeling: Having Kittens
and solve problems.	F.LE.1 Distinguish between situations that can	2-94, 7-28, 7-35, 7-36, 7-51	Sorting Functions
Compare linear and exponential	be modeled with linear functions and with		Linear and Exponential Models
growth to quadratic growth.	exponential functions.		
	a. Prove that linear functions grow by equal	2.2.1–2.2.3, 4.1.1	Mathematics Vision Project:
	differences over equal intervals; and that	3-23, 5-80, 6-115, 8-41, 10-57	Arithmetic and Geometric
	exponential functions grow by equal factors		<u>Sequence</u>
	over equal intervals.	5.1.1–5.1.3, 5.3.2, 7.1.2–7.1.6,	
		7.2.3, 11.3.5	Linear and Exponential
	b. Recognize situations in which one	MN: 7.1.3	<u>Functions</u>
	quantity changes at a constant rate per unit	Checkpoints 9 and 10A	
	interval relative to another.	5-121, 7-63, 8-20, 9-43, 10-19	NCTM Illuminations
			Egg Launch
	c. Recognize situations in which a quantity	2.1.1–2.3.2, 5.2.1–5.2.3, 5.3.2,	
	grows or decays by a constant percent rate	7.1.2, 7.2.2, 11.3.5	
	per unit interval relative to another.	MN: 2.2.2, 3.3.2, 9.3.1	
		Checkpoints 5B, 7A, 9, and	
		10A	
		3-22, 3-38, 7-36, 7-73, 7-91,	
	F.LE.2 Construct linear and exponential	7-96, 9-71, 9-78	

	functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	5.3.1	
(s)Interpret expressions for	F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. Functions – Linear, Quadratic, and		
functions in terms of the situation they model.	Exponential Model F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context. \star [Linear and exponential of form $f(x)=b^x + k$.]	2.1.1–2.2.3, 7.1.2–7.1.6, 11.3.5 MN: 4.2.4 Checkpoints 7A and 10A 6-116, 7-54, 7-107, 10-145, 11-52	Illustrative Mathematics: Throwing Baseballs – F.IF.9 and F.IF.4
	F.LE.6. Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. ★ CA	8.2.1, 9.1.3, 9.1.4, 10.2.6 Checkpoint 11 9-54, 10-41, 10-86, 11-121, 11-130	